Zynq UltraScale MPSoC Base TRD 2017.1 - Design Module 6

Zynq UltraScale MPSoC Base TRD 2017.1 - Design Module 6

Design Overview


This module shows how to add a Test Pattern Generator (TPG) implemented in the PL.





Design Components


This module requires the following components:
  • zcu102_base_trd (Vivado)
  • petalinux_bsp
    • zynqmp_fsbl
    • pmufw
    • bl31
    • u-boot
    • kernel
    • device tree (zcu102-base-dm6.dtsi)
    • rootfs
  • video_lib
  • video_qt2



Build Flow Tutorials


PL Base TRD


This tutorial shows how to build the Base TRD Vivado design that implements the TPG capture pipeline, HDMI Rx capture pipeline including VPSS scaler & frame-buffer read configured for 2ppc and HDMI Tx display pipeline including video-mixer configured for 2ppc.

  • Open the Vivado project.
    % mkdir -p $TRD_HOME/pl
    % cp -rf $TRD_HOME/apu/sdsoc_pfm//zcu102_[es2_]base_trd/hw/vivado $TRD_HOME/pl
    % cd $TRD_HOME/pl/vivado
    % vivado zcu102_[es2_]base_trd.xpr
  • Implement the design and generate a bitstream
  • Copy the generated bitstream to the PetaLinux directory.
    % cp zcu102_[es2_]base_trd.runs/impl_1/zcu102_[es2_]base_trd_wrapper.bit $TRD_HOME/apu/petalinux_bsp/images/linux/system.bit

PetaLinux BSP


This tutorial shows how to build the Linux image and boot image using the PetaLinux build tool.

  • The petalinux-config step can be skipped if this was already done in a previous module.
    % cd $TRD_HOME/apu/petalinux_bsp
    % petalinux-config --oldconfig
  • Select the device-tree matching design module 6 and build all Linux image components. If you have run petalinux-build in a previous module, the build step will be incremental.
    % cd project-spec/meta-user/recipes-bsp/device-tree/files/
    % cp zcu102-base-dm6.dtsi system-user.dtsi
    % petalinux-build
    % cd -
  • Create a boot image.
    % cd images/linux
    % petalinux-package --boot --bif=dm6.bif --force
  • Copy the generated boot image and Linux image to the dm6 SD card directory.
    % mkdir -p $TRD_HOME/images/dm6
    % cp BOOT.BIN image.ub $TRD_HOME/images/dm6

Video Qt Application


There is no need to rebuild the video_qt2 application if you have already built it in module 5, otherwise follow the instructions from module 5.

  • Copy the generated video_qt2 executable to the dm6 SD card directory.
    % cp $TRD_HOME/apu/video_app/video_qt2/video_qt2 $TRD_HOME/images/dm6



Run Flow Tutorial


  • See here for board setup instructions.
  • Copy all the files from the $TRD_HOME/images/dm6 SD card directory to a FAT formatted SD card.
  • Power on the board to boot the images; make sure INIT_B, done and all power rail LEDs are lit green.
  • After ~30 seconds, the display will turn on and the application will start automatically, targeting the max supported resolution of the monitor (one of 3840x2160 or 1920x1080 or 1280x720). The application will detect whether DP Tx or HDMI Tx is connected and output on the corresponding display device.
  • The SD card file system is mounted as read-only at /media/card. The remount the file system as read-write, run
    % remount
  • To re-start the TRD application with the max supported resolution, run
    % run_video.sh
  • To re-start the TRD application with a specific supported resolution use the -r switch e.g. for 1920x1080, run
    % run_video.sh -r 1920x1080
  • The user can now control the application from the GUI's control bar (bottom) displayed on the monitor.
  • The user can select from the following video source options:
    • TPG (SW): virtual video device that emulates a USB webcam purely in software
    • USB: USB Webcam using the universal video class (UVC) driver
    • TPG (PL): Test Pattern Generator implemented in the PL
    • HDMI: HDMI input implemented in the PL
  • The video info panel (top left) shows essential settings/statistics.
  • The CPU utilization graph (top right) shows CPU load for each of the four A53 cores.



Return to the Design Tutorials Overview.

© Copyright 2019 - 2022 Xilinx Inc. Privacy Policy